1,254 research outputs found

    MicroRNAs: Target Recognition and Regulatory Functions

    Get PDF
    MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.National Institutes of Health (U.S.

    Redefinition of the Modern, Native Epistemology and Global Identity

    Get PDF

    Reagan Administration: Funding Cuts News Articles (1981-1982): News Article 26

    Get PDF

    lincRNAs: Genomics, Evolution, and Mechanisms

    Get PDF
    Long intervening noncoding RNAs (lincRNAs) are transcribed from thousands of loci in mammalian genomes and might play widespread roles in gene regulation and other cellular processes. This Review outlines the emerging understanding of lincRNAs in vertebrate animals, with emphases on how they are being identified and current conclusions and questions regarding their genomics, evolution and mechanisms of action.National Institutes of Health (U.S.) (Grant GM067031

    kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences

    Get PDF
    Motifs of only 1–4 letters can play important roles when present at key locations within macromolecules. Because existing motif-discovery tools typically miss these position-specific short motifs, we developed kpLogo, a probability-based logo tool for integrated detection and visualization of position-specific ultra-short motifs from a set of aligned sequences. kpLogo also overcomes the limitations of conventional motif-visualization tools in handling positional interdependencies and utilizing ranked or weighted sequences increasingly available from high-throughput assays. kpLogo can be found at http://kplogo.wi.mit.edu/.National Cancer Institute (U.S.) (GM118135)Helen Hay Whitney Foundation (Fellow

    Long non-coding RNAs in C. elegans

    Get PDF
    Thousands of long non-coding RNAs (lncRNAs) have been found in vertebrate animals, a few of which have known biological roles. To better understand the genomics and features of lncRNAs in invertebrates, we used available RNA-seq, poly(A)-site, and ribosome-mapping data to identify lncRNAs of C. elegans. We found 170 long intervening ncRNAs (lincRNAs), which had single- or multi-exonic structures that did not overlap protein-coding transcripts, and about sixty antisense lncRNAs (ancRNAs), which were complementary to protein-coding transcripts. Compared to protein-coding genes, the lncRNA genes tended to be expressed in stage-dependent manner. Approximately 25% of the newly identified lincRNAs showed little signal for sequence conservation and mapped antisense to clusters of endogenous siRNAs, as would be expected if they serve as templates and targets for these siRNAs. The other 75% tended to be more conserved and included lincRNAs with intriguing expression and sequence features associating them with processes such as dauer formation, male identity, sperm formation, and interaction with sperm-specific mRNAs. Our study provides a glimpse into the lncRNA content of a non-vertebrate animal and a resource for future studies of lncRNA function

    Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos

    Get PDF
    In animals, maternal gene products deposited into eggs regulate embryonic development before activation of the zygotic genome1. In plants, an analogous period of prolonged maternal control over embryogenesis is thought to occur based on some gene-expression studies2, 3, 4, 5, 6. However, other gene-expression studies and genetic analyses show that some transcripts must derive from the early zygotic genome7, 8, 9, 10, 11, 12, 13, 14, implying that the prevailing model does not fully explain the nature of zygotic genome activation in plants. To determine the maternal, paternal and zygotic contributions to the early embryonic transcriptome, we sequenced the transcripts of hybrid embryos from crosses between two polymorphic inbred lines of Arabidopsis thaliana and used single-nucleotide polymorphisms diagnostic of each parental line to quantify parental contributions. Although some transcripts seemed to be either inherited from primarily one parent or transcribed from imprinted loci, the vast majority of transcripts were produced in near-equal amounts from both maternal and paternal alleles, even during the initial stages of embryogenesis. Results of reporter experiments and analyses of transcripts from genes that are not expressed in sperm and egg indicate early and widespread zygotic transcription. Thus, in contrast to early animal embryogenesis, early plant embryogenesis is mostly under zygotic control.National Institutes of Health (U.S.) (NIH grant GM067031)National Institutes of Health (U.S.) (NIH Postdoctoral Fellowship GM084656)Howard Hughes Medical Institute (Investigator

    Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme

    Get PDF
    The relationship between genotype and phenotype is often described as an adaptive fitness landscape. In this study, we used a combination of recombination, in vitro selection, and comparative sequence analysis to characterize the fitness landscape of a previously isolated kinase ribozyme. Point mutations present in improved variants of this ribozyme were recombined in vitro in more than 10[superscript 14] different arrangements using synthetic shuffling, and active variants were isolated by in vitro selection. Mutual information analysis of 65 recombinant ribozymes isolated in the selection revealed a rugged fitness landscape in which approximately one-third of the 91 pairs of positions analyzed showed evidence of correlation. Pairs of correlated positions overlapped to form densely connected networks, and groups of maximally connected nucleotides occurred significantly more often in these networks than they did in randomized control networks with the same number of links. The activity of the most efficient recombinant ribozyme isolated from the synthetically shuffled pool was 30-fold greater than that of any of the ribozymes used to build it, which indicates that synthetic shuffling can be a rich source of ribozyme variants with improved properties.National Institutes of Health (U.S.) (Grant GM061835
    • …
    corecore